We digitalize the future of chemical and materials industries with cutting-edge generative AI, reducing go-to-market cycles from decades to months.
我们致力于运用尖端生成式AI数字化化学与材料工业的未来,目标将产品上市周期从数十年缩短至数月。
Our intelligent platform leverages advanced algorithms to design novel materials tailored for real-world needs, assisting industries innovate faster.
我们的智能平台通过先进算法设计面向实际需求的新型材料,助力产业更高效地实现创新。
Our proprietary predictive simulations accelerate trial-test cycles 1000× faster than DFT, slashing development time and securing a critical time-to-market advantage.
我们的专有预测模拟系统比DFT快1000倍,有助于大幅缩短开发时间,获得关键的市场先机。
Designed for flexibility, our tools adapt smoothly to your infrastructure and grow alongside your evolving research and production demands.
我们的工具专为灵活性为本,能够无缝适配您的基础设施,并随着科研与生产需求的演进持续扩展。
From materials discovery to deployment, we offer holistic support across every stage of process to mitigate risk, improve product performance, and bring innovations to market faster.
从材料发现到部署,我们在每个阶段提供全面支持,以降低风险、提高产品性能并协助商业化。
Are your company's legacy approaches holding you back? Take 7 minutes to discover how Aethorion AI delivers smarter solutions, lightning-fast results, and the competitive edge you have been missing!
贵公司的传统方法是否阻碍了发展?只需7分钟了解Aethorion AI如何提供更智能的解决方案、闪电般快速的结果和您一直缺少的竞争优势!
Selected atoms: None
已选原子: 无
Information Overload
信息过载
Scholarly output exceeds 3 million articles per year.
学术产出每年超过300万篇文章。
Human Bias
人为偏见
Positive-result papers are 1.6× more likely to be cited.
阳性结果论文被引用的可能性是1.6倍。
Domain Expertise Intensive
领域专业知识密集
68% of researchers struggle to interpret literature outside their sub-field.
68%的研究人员难以解释其子领域外的文献。
Time-Consuming Cycles
耗时周期
It can take 5–10 years to discover and scale a new material from lab to market due to slow iteration loops.
由于迭代周期缓慢,从实验室发现新材料到规模化生产可能需要5-10年。
High Cost Burden
高成本负担
Experimental trial-and-error can consume up to 70% of total R&D budgets.
实验试错可能消耗高达70%的研发预算。
Poor Reproducibility
重现性差
Over 85% of experimental efforts in materials R&D fail to produce viable results, often requiring hundreds of iterations to optimize a single formulation.
材料研发中超过85%的实验未能产生可行结果,通常需要数百次迭代来优化单一配方。
Limited Scalability
可扩展性有限
Physical experiments lack the scalability and speed of data-driven approaches, making high-throughput exploration prohibitive.
物理实验缺乏数据驱动方法的可扩展性和速度,使得高通量探索变得困难。
Instrumentation Bottleneck
仪器瓶颈
Advanced characterization instruments require manual setup, calibration, and interpretation, limiting true throughput. A single detailed scan can take hours per sample.
先进表征仪器需要手动设置、校准和解释,限制了实际通量。单个详细扫描可能需要每个样品数小时。
Data Backlogs
数据积压
Over 60% of generated samples go uncharacterized in real-time due to instrument or personnel limitations.
由于仪器或人员限制,超过60%生成的样品无法实时表征。
Labor-Intensive Workflows
劳动密集型工作流
Characterization often requires specialist intervention, resulting in autonomous pipelines and human error or bias.
表征通常需要专家干预,导致自主流程和人为错误或偏见。
Delayed Feedback Loops
延迟的反馈循环
Without rapid property readouts, iterative optimization cycles stall, reducing the effective speed of discovery.
没有快速的性能读数,迭代优化周期停滞,降低了发现的有效速度。
Select Adsorbate Molecule:
选择吸附分子:
Costly Experimentation
昂贵的实验
Every non-optimal setting consumes time and material. Empirical tuning can account for 30–50% of total experimental cost in complex system development.
每个非最优设置都会消耗时间和材料。在复杂系统开发中,经验调优可能占总实验成本的30-50%。
Trial Without Guidance
无指导尝试
Without data-driven optimization, researchers can miss global optima, spending 10× more time converging to acceptable but non-optimal outcomes.
没有数据驱动的优化,研究人员可能会错过全局最优,花费10倍的时间收敛到可接受但非最优的结果。
Limited Knowledge Transfer
知识转移有限
Empirical strategies are hard to generalize. Parameter sets optimized for one condition often fail to transfer across scales or environments, increasing redundancy.
经验策略难以推广。为一个条件优化的参数集通常无法跨尺度或环境转移,增加了冗余。
High Dimensionality
高维度
Complex systems typically involve numerous tunable variables, making brute-force or empirical tuning significantly inefficient.
复杂系统通常涉及大量可调变量,使得暴力或经验调优效率极低。
Prolonged Testing Cycles
测试周期长
Field validation can take months to years to simulate aging, environmental exposure, or performance under operating conditions.
现场验证可能需要数月到数年来模拟老化、环境暴露或操作条件下的性能。
Iterative Redesign Delays
迭代重新设计延迟
Failed validations typically require going back to the lab, slowing down time-to-market by 6–18 months per iteration.
验证失败通常需要返回实验室,每次迭代使上市时间减慢6-18个月。
Poor Transferability
可转移性差
Lab-optimized materials may underperform in field environments due to uncontrolled variables like humidity, mechanical stress, or impurities.
实验室优化的材料在野外环境中可能表现不佳,因为湿度、机械应力或杂质等不受控变量。
Ready to see the full potential? Reach out for an extended demo!
联系我们探索更多合作空间!
This is just the beginning! Connect with us to unlock a partnership experience tailored exclusively for your exponential growth!
Partner With Us
这只是开始!与我们联系,开启专为您指数级增长定制的合作伙伴体验!
与我们合作
We launched Aethorix v1.0 to introduce our breakthrough solutions to the chemical and materials industry!
我们发布了Aethorix v1.0,向化学和材料行业推出我们的突破性解决方案!
View Paper查看论文 View Code查看代码The co-founders won the second prize in the 2025 Sustainability In Action (SIA) Business Competition!
联合创始人在2025年可持续发展行动(SIA)商业竞赛中获得总决赛二等奖!
Read More阅读更多